大家好,今天小编关注到一个比较有意思的话题,就是关于纳米技术材料的问题,于是小编就整理了2个相关介绍纳米技术材料的解答,让我们一起看看吧。
不同维度纳米材料优缺点?
一、不同维度纳米材料的优点:
①力学性能。高温、高硬、高强是结构材料开发的永恒主题,纳米结构材料的硬度或强度与粒径成反比,符合Hall-Retch关系式。材料晶粒的细化及高密度界面的存在,必将对纳米材料的力学性能产生很大的影响。在纳米材料中位错密度非常低,位错滑移和增殖采取Frand-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以在纳米材料中位错的滑移和增殖不会发生,此即纳米晶强化效应。
②光学性能。纳米粒子的粒径(10~100nm)小于光波的波长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜时形成的高反射率光泽面成强烈对比。由于量子尺寸效应,纳米半导体微粒的吸收光泽普遍存在蓝移现象,纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。此外,TiO2超细或纳米粒子还可用于抗紫外线用品。
当人们将宏观物体细分成纳米级的超微颗粒后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同
二、其缺点有:
①点缺陷。又叫做零维缺陷,由于原子的热运动,是无法避免的。点缺陷包括空位、取代(杂质原子替代原本的原子)、间隙(杂质原子处于原本原子形成的空隙之间,可以由本身原子形成,也可以由外来原子形成)等。如,空位就是一种零维缺陷。
②线缺陷。位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。如,位错就是一种一维缺陷。
③面缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒内。如,孪晶、层错等,这是一种二维缺陷。
纳米材料的优点:
除味、杀菌、韧性强、延长老化时间等。
缺点:
一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5mTm时,位错的行为决定了材料的力学性能。随着晶粒尺寸的减小,位错的作用开始减小。2)当晶粒尺寸在30—50nm时可认为基本上没有位错行为。3)当晶粒尺寸小于10nm时产生新的位错很困难。4)当晶粒小于约2nm时,开动位错源的应力达到无位错晶粒的理论切应力。
制备纳米材料的方法有哪几种?
纳米材料的制备方法
1.
气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。
2.
沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。
3.
水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。
4.
溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒。
到此,以上就是小编对于纳米技术材料的问题就介绍到这了,希望介绍关于纳米技术材料的2点解答对大家有用。